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A long tradition of physiological research in animals and humans

has provided a basic understanding of how gastrointestinal hor-

mones communicate with the brain to influence nutrient diges-

tion, absorption, transport and storage. Research is now focusing

on the relationships between these gut hormones and brain areas

controlling appetite, ingestion, food reward and body weight

(1, 2). Despite these advances, there is still much to learn about

how the gut and brain interact to influence body weight and

adiposity. We review recent animal and human research concern-

ing the role of gut peptides in appetite and body weight. We

then describe novel studies combining neuroimaging approaches

with experimental manipulations of hormones via feeding or direct

hormone infusions to reveal the dynamic neuroendocrine pathways

underlying appetite regulation in lean and obese animals and

humans.

Gut, appetite and weight

The gut influences feeding behaviour by generating hunger and

satiety signals secondary to acute changes in mechanical and

nutritional stimuli. These signals travel primarily via the vagus

nerve to the brainstem (i.e. nucleus tract solitaris), and then to the

hypothalamus (i.e. the arcuate nucleus; ARC) for processing (3).

Following peripheral and central signal integration, effector

responses are generated to modulate energy balance based on

immediate physical need and food reward (4). Peptides from the

gastrointestinal tract (e.g. ghrelin) and adipose tissue (e.g. leptin)

penetrate the blood–brain barrier (BBB) via transporters. Insulin

alters the brain endothelial cell function in the BBB, and adipo-

nectin promotes the secretion of substances such as interleukin-6

in the BBB to mediate effects on feeding centrally (5).

Peripheral peptides can be characterised as orexigenic [i.e. rise

before meals and may help initiate food intake and then decline

following meals such as ghrelin, anorexigenic [i.e. rise following

meals and help to terminate food intake (e.g. cholecystokinin;

CCK)], or regulate inter-meal intervals [e.g. glucagon-like peptide

1 (GLP-1) and peptideYY3-36 (PYY3-36)] (6). Gut peptides and adi-

posity signals (e.g. leptin and insulin) can act both locally and

centrally to influence appetite control. For example, ghrelin, a

hormone produced in the gastric antrum and fundus, can

increase gastric acid production, gastric motility and emptying as

well as activate vagal afferents and the hypothalamus to stimu-

late food intake in both animal models and in humans (7). Simi-

larly, GLP-1, which is co-localised with PYY3-36 in the distal gut,
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acts as an ileal brake for the upper gastrointestinal tract, slowing

gastric emptying of liquid and solid meals, thus inhibiting food

intake via both gastric distension and vagally mediated central

actions (8, 9). Leptin and insulin are long-term regulators of food

intake and energy balance and can modulate the effects of a

number of gut peptides (e.g. CCK). Although a small amount is

secreted by the stomach, leptin is mainly produced by adipose

tissue and generates feedback signals to the brain about the

degree of fat storage, as does insulin (10). Key findings of

obese–lean differences in basal plasma peptide levels and respon-

sivity to experimental manipulations in animals and humans are

summarised in Table 1.

Brain, appetite and weight

In addition to signalling in the periphery, a number of hormones

produced in the brain also regulate appetite (Table 1). Neuropeptide

Y (NPY) and agouti-related protein-producing neurones in the ARC

are activated by ghrelin to stimulate food intake, whereas serotonin

from the raphe nucleus inhibits feeding (10, 11). Similar to their

peripheral effects, centrally-released endocannabinoids (12) increase

food intake, whereas GLP-1 (8), and oxyntomodulin (13) decrease it.

By contrast to ghrelin, PYY appears to have different actions

according to site of administration and release. Suppression of food

intake has been found by peripheral administration (14), whereas

increases have been found after central administration (15, 16),

highlighting the complexity of neural and hormonal signals relating

to appetite control.

A number of brain regions regulate appetite and food intake

(Fig. 1), and may be considered as either ‘homeostatic’ or ‘hedonic’

systems. The homeostatic system is comprised of the hypothalamus

(10) and brainstem, and appears to drive food intake based on calo-

ric need or energy balance (17, 18). Homeostatic areas integrate

inputs from higher cortical regions involved with the perceived

reward value of food (19, 20), indicating that the desire to eat pal-

atable foods, sometimes termed ‘hedonic’ or reward-related hunger,

is neurally mediated (2, 21, 22). The mesolimbic dopamine system,

including the ventral tegmental area (VTA) of the midbrain and

extending to the nucleus accumbens in the striatum, is considered

the major reward pathway (23). Neural responses within the hedo-

nic brain network to environmental food cues may override homeo-

static signals, contributing to the development and maintenance of

obesity (18).

Functional neuroimaging has recently been employed to learn

more about the neural basis of appetite and weight regulation. One

of the advantages of functional neuroimaging is the ability to con-

duct in vivo assessments of human brain function. However, it is

also possible to use small scanners for live laboratory animals,

reducing the need for invasive techniques (e.g. single-cell record-

ing), and also providing a view of whole brain activity.

In positron emission tomography (PET), a radioactive tracer com-

monly labeled with 15O (to measure regional cerebral blood flow) is

injected. The tracer is absorbed by active regions as neuronal activ-

ity leads to an increase in blood flow (24). As the radioactive tracer

decays, two gamma photons are emitted in opposite directions and

simultaneously recorded by detectors, producing high resolution,

topographically-accurate images (24). Neurotransmitter release and

changes in the radiotracer binding potential at neuroreceptor sites

can also be measured using PET (25).

By comparison, functional magnetic resonance imaging (fMRI)

detects changes in the magnetic properties of haemoglobin, result-

ing from neural demands for oxygenated blood. The fMRI scanner

detects changes in this hemodynamic response and records the

blood oxygen level-dependent (BOLD) signal. The higher the propor-

tion of oxyhaemoglobin (diamagnetic) relative to deoxyhaemoglobin

(paramagnetic), the less interference to the radio frequency pulse

generated by the scanner, and the stronger the BOLD signal and

the brighter the image (26). Although specific biomarkers are not

easily identified using fMRI in comparison to a radioligand-PET

study (27), the relative safety, absence of radioactivity, and high

spatial and temporal resolution of fMRI, has resulted in its eclipsing

PET (28) as the dominant approach in neuroimaging research.

Functional neuroimaging can be used to study the whole brain

in exploratory fashion or to map a priori brain regions of interest

(27). In addition, analyses of functional connectivity can provide

insight into how neural networks interact with each other to carry

out cognitive and behavioural functions (29). Conclusions about the

exact circuitry and causal mechanisms are limited by spatiotemporal

resolution and, frequently, by the cross-sectional, descriptive nature

of the data generated (27, 30).

Neuroimaging studies of ingestion and gut hormones

Homeostatic pathways, and to some degree hedonic pathways, have

been mapped to a large extent in the brains of lean and obese ani-

mals. However, attempts to do this in humans are more difficult

and complex, and the pathways involve many higher-order cortical

areas. Functional neuroimaging has become key for understanding

the appetitive pathways in the human brain. The effects of gut

peptides on appetite and weight are relatively well studied in both

animals and humans, and neuroimaging studies have advanced our

understanding of human brain areas. However, the interaction

between hormonal activity and brain activation has been little

studied. Combining these approaches should reveal the relative

contribution of specific appetite-related hormones to activity in

brain regions of interest.

Animal studies

Neuroimaging experiments in small animals are evolving; however,

there are several caveats and limitations. There are currently few

structural brain atlases created for mouse models and no concor-

dance on which three-dimensional mapping brain atlas system to

use (31). Also, in contrast to humans, rodents are often anaesthe-

tised, which could affect the BOLD-fMRI signal by alterations in

brain perfusion (32). To reduce potential confounding, imaging par-

adigms in animals should ideally include concurrent monitoring of

heart rate, respiratory rate, carbon dioxide levels, temperature and

blood pressure. In non-anaesthetised animals and humans, studies

of the brainstem should consider movement artefacts introduced
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Table 1. Key Peripheral and Central Peptides Involved in Feeding and Body Weight Regulation.

Peptides Site of synthesis

Effect

on food

intakea Basal levels: obese versus leana Responsivityb: obese versus leana

Peripheral

Adiponectin Adipose tissue › (80) Lower in obese Ss (81) Lesser postprandial › in obese women post

high-CHO (60%) meal (82)

Amylin Pancreas fl (83) Higher in obese cats (84) Greater postprandial › in obese versus lean cats post

high-fat (46%), high-protein (48%), and high-CHO

(35%) meal (84)

Cholecystokinin

(CCK)

GI tract, mostly

small intestine

fl (85) Lower in obese women with

metabolic syndrome (86)

Lesser postprandial › in morbidly obese women with

metabolic syndrome post high-CHO (54.4%) meal

(86)

Endocannabinoids

(AEA, 2-AG)

GI tract, adipose

tissue

› (12) Higher GI tissue AEA and 2-AG

and lower visceral and s.c. fat

AEA in obese fa ⁄ fa versus lean

rats (87)

Post-fasting › in AEA levels in visceral and s.c. fat in

obese fa ⁄ fa rats versus lean rats, and fl during

refeeding (87)

Ghrelin Stomach › (88) Lower in obese Ss (86, 89) Lesser postprandial initial fl in obese women post

high-CHO (60%) meal (82)

Glucagon-like

peptide-1 (GLP-1)

Pancreas, large

intestine

fl (90) Higher in ZDF rats versus NOD

rats (91)

Lesser postprandial › in obese Ss post standard

breakfast (45)

Insulin Pancreas fl (92) Higher in obese Ss (93, 94) Greater postprandial › in obese Ss post standard

liquid meal (93) and post high-CHO (60%) meal

(82)

Leptin Adipose tissue fl (95) Higher in obese Ss (81) Greater postprandial › in obese children post

standard meal (96) and obese women post

high-CHO (60%) meal (82)

Oxyntomodulin

(OXM)

L cells in GI tract fl (97) Unknown Unknown

Pancreatic

polypeptide (PP)

Pancreas, colon,

rectum

fl (98) M in obese Ss (99) Lower in

obese versus lean children (94)

Lesser postprandial › in obese Ss during

somatostatin infusion post test meal (99)

Postprandial › in obese, lean and post-RYGB Ss.

No significant difference between groups (100)

Peptide YY3-36

(PYY3-36)

L cells in lower GI

tract

fl (14) Lower in obese Ss (14) Lesser postprandial › in obese Ss post buffet lunch

(14) and obese women post high-CHO (54.4%) meal

(86)

Central

a-melanocyte

stimulating

hormone (a-MSH)

Hypothalamus fl (101) Lower POMC RNA in obese fa ⁄ fa

versus lean + ⁄ +, + ⁄ fa rats (102)

Post s.c. leptin infusion, › in POMC1 mRNA in wt

lean and ob ⁄ ob mice (103)

Agouti-related

protein (AgRP)

Hypothalamus › (104) Higher AGRP in ob ⁄ ob mice (23) Post s.c. leptin infusion, › AGRP in wt lean mice and

fl in ob ⁄ ob mice (103)

b-endorphin Pituitary,

hypothalamus,

brainstem

› (85)

fl (105)

Lower POMC RNA in obese fa ⁄ fa

versus lean + ⁄ +, + ⁄ fa rats (102)

Higher b-endorphin levels in

obese Ss versus lean Ss (106)

Post s.c. leptin infusion, › POMC1 mRNA in wt lean

and ob ⁄ ob mice (103)

Cocaine and

amphetamine-

regulated

transcript (CART)

Hypothalamus fl (107)

› (108)

fl CART mRNA in ob ⁄ ob versus

wt lean mice (103)

Post s.c. leptin infusion, M in CART mRNA in wt lean

mice and › in ob ⁄ ob mice (103)

Corticotrophin-

releasing hormone

(CRH)

Hypothalamus fl (109) Higher corticosterone in obese

fa ⁄ fa rats versus lean Fa ⁄ ? rats

(110)

Greater post-prandial › CRH-binding protein in

anterior pituitary in lean Fa ⁄ ? versus obese fa ⁄ fa

rats post ad libitum meal (111)

Endocannabinods Hypothalamus › (12) More striatal CB1-phosphorylated

receptor cells in obese fa ⁄ fa

versus lean Fa ⁄ ? rats (112)

Greater fl striatal and hippocampal

CB1-phosphorylated receptor cells with repeated

fluoxetine in fa ⁄ fa versus saline-treated rats (112)
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by respiratory and cardiac motion and adjust for this by using

respiratory and cardiac monitoring. Finally, few institutions have

appropriate small animal MR scanners and instead rely on clinical

MR scanners, which have much lower field strengths (1.0–3.0 T)

than small-bore scanners (4.7–16.4 T) compromising image quality

(33). Nevertheless, a number of important findings have emerged

from neuroimaging in animals.

PET

Thanos et al. (34) compared brain activation during presentation of

a highly palatable food stimulus (bacon scent) in 20 male adult

Zucker (leptin-deficient) obese and lean rats, following a 24-h fast.

Four groups [obese ad libitum fed, obese food restricted (70% of

amount of ad libitum fed), lean ad libitum fed, and lean food

restricted] rats, were scanned twice in a 2-week span for 40 min,

once with bacon scent only (pre-diet) and once with bacon scent

after the mice were fed 5 g of bacon for five consecutive days

(post-diet). Obese rats showed greater activation of the medial thal-

amus (goal-directed behaviour) and deactivation of hippocampus

(memory) than lean rats in response to the bacon scent at pre-diet

compared to post-diet. They also showed deactivation in the frontal

cortex (higher level functions), which was not present in the lean

rats. The ad libitum fed rats (both obese and lean) demonstrated

Table 1. (Continued)

Peptides Site of synthesis

Effect

on food

intakea Basal levels: obese versus leana Responsivityb: obese versus leana

GABA CNS › (113) Higher in medial hypothalamus of

obese fa ⁄ fa versus lean Fa ⁄ Fa

rats M in lateral hypothalamus

(114)

Post 2-DG infusion, M GABA in medial and

lateral hypothalamus in obese fa ⁄ fa rats.

Post 2-DG infusion, › GABA in medial and

fl GABA in lateral hypothalamus in lean

Fa ⁄ Fa rats (114)

Galanin (GAL) Hypothalamus,

brainstem

› (115) Lower in obese fa ⁄ fa versus lean

FA ⁄ – rats (116)

Higher in obese versus lean

female Ss (117)

Greater gene expression in obese

fa ⁄ fa versus lean Fa ⁄ ? rats

(118)

› GAL mRNA expression in obese fa ⁄ fa rats

versus lean Fa ⁄ ? rats post 4-week high-

CHO (66%) or intermediate versus high-fat

(72%) diet (118)

Galanin-like peptide

(GALP)

Hypothalamus,

median eminence

› (119) Lower mRNA expression in ob ⁄ ob

mice versus wt lean mice (120)

Post i.c.v. leptin infusion, greater › in mRNA

expression in ob ⁄ ob versus wt lean mice

(120)

Glucagon-like

peptide-1 (GLP-1)

Brainstem fl (8) Higher preproglucagon mRNA

levels in obese fa ⁄ fa rats versus

lean Fa ⁄ ? rats (121)

Post food restriction, fl preproglucagon.Post

over-feeding, › preproglucagon in lean Fa ⁄ ?

rats versus M in obese fa ⁄ fa rats (121)

Melanin-

concentrating

hormone (MCH)

Hypothalamus › (122) Higher MCH mRNA levels in obese

fa ⁄ fa versus lean rats (122)

Post 6-months high-fat (45%) then 1-month

low-fat (10%) diet, M MCH mRNA in DIO

and diet-resistant lean rats (123)

Neuropeptide Y

(NPY)

Hypothalamus › (101) Higher NPY in obese fa ⁄ fa rats

(124), and obese female Ss (117)

Post s.c. leptin infusion, M in NPY mRNA in

wt lean mice and fl in ob ⁄ ob mice (103)

Norepinephrine (NE) Locus coeruleus ›fl (101, 125) M in obese fa ⁄ fa and lean Fa ⁄ fa

rats (126)

Post CHO-rich (95%) meal, greater › in NE in

lean versus obese female Ss; post high-fat

(76%) diet, M between groups (127)

Oxyntomodulin

(OXM)

Brainstem fl (13) Higher preproglucagon mRNA in

obese fa ⁄ fa rats (121)

Post food restriction, fl preglucagon; and

post overfeeding.› preproglucagon in lean

Fa ⁄ ? rats versus M in fa ⁄ fa rats (121)

Serotonin (5-HT) Dorsal raphe nucleus fl (11, 101) M in lean Fa ⁄ Fa and obese fa ⁄ fa

rats (128)

Greater postprandial › 5-HT at 40 min and

60 min post-meal (40% CHO, 30% protein,

30% fat) in obese fa ⁄ fa versus lean Fa ⁄ Fa

rats (128)

aIllustrative examples only; not an inclusive list. bResponse to experimental manipulation, including feeding, restriction, fasting, or hormone infusion; ›,

increase; fl, decrease; M, no significant change; Ss, adult human subjects, all comparisons are with lean Ss, and groups include both men and women, unless

otherwise specified; 2-AG, arachidonoylglycerol; 2-DG, 2-deoxy-D-glucose; AEA, anandamide; CB, cannabinod; CHO, carbohydrate; CNS, central nervous system;

DIO, diet-induced obesity; fa ⁄ fa, genotype encoding obese Zucker leptin receptor deficient; Homozygous (Fa/Fa, +/+), Heterozygous (Fa/-, +/fa), Homozygous

or Heterozygous (Fa/?) genotypes encoding lean Zucker; GI, gastrointestinal; mRNA, messenger RNA; NOD, non-obese diabetic; ob ⁄ ob, genetic leptin deficient

obese mice; POMC, pro-opiomelanocortin (precursor of a-MSH and b-endorphin); RYGB, Roux-en-Y gastric bypass; wt, wild-type; ZDF, Zucker diabetic fatty.
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greater activation in the right insular ⁄ parietal cortex (integrates

multimodal sensory input) and medial olfactory bulb post-diet,

whereas restricted animals (both obese and lean) showed greater

activation in the medial thalamus, right and left olfactory bulb, and

right hippocampal fissure in the post-diet compared to pre-diet.

These findings suggest that obese or restricted animals may

experience more activation of areas involved in goal-directed

behaviour and thus be more motivated to seek out a food reward

after exposure to a highly palatable food stimulus. Lower-order

brain regions responsive to food cues (e.g. olfactory nucleus) may

also be modulated by access to food, suggesting that an extensive

brain network is recruited to promote feeding in conditions of per-

ceived caloric need (34). Because the obese rats were leptin-defi-

cient, the study suggests that leptin plays a key role in shaping

neural responses to recognisable or rewarding food stimuli. In sup-

port of this, recent studies have shown that leptin-deficient

humans demonstrate changes in hedonic [i.e. ventral striatum, pre-

frontal cortex (PFC)] brain areas after repeated exposure to palat-

able food cues following leptin replacement (35, 36).

fMRI

A number of studies have now used fMRI to directly assess whole

brain or region of interest activation parallel with or following

changes in gut hormone levels brought about by either direct hor-

mone infusion or glucose infusion or ingestion. For example, Chen
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Fig. 1. Brain regions involved in feeding behaviour. Acb, nucleus accumbens; BLA, basolateral amygdala; CEA, central nucleus of the amygdala; DMH, dorso-

medial hypothalamus; LH, lateral hypothalamus; MD, mediodorsal thalamic nucleus; NTS, nucleus of the solitary tract; PB, parabrachial nucleus; PV, para-

ventricular; PVN, paraventricular nucleus of the hypothalamus; VMH, ventromedial nucleus of the hypothalamus. Image reproduced with permission (129).
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et al. (37) studied the hypothalamic response after glucose inges-

tion in 24 lean and 24 overweight rats with fMRI. Three midsagittal

slices through the hypothalamus were obtained with echo-planar

imaging for 60 min, and NPY and serotonin (5-HT) expression was

detected with immunohistochemistry following image acquisition.

As a control, a second fMRI scan was conducted in six lean and six

overweight rats after ingestion of water on an alternate day. The

hypothalamic fMRI signal was transiently lowered in all rats within

19.5–25.5 min of oral glucose consumption, although the decrease

was greater in the lean than the overweight rats, with no change

observed in the control animals. Both NPY and 5-HT concentrations

were reduced to a greater degree in the overweight than the lean

rats, but only the reduction in 5-HT levels was significant.

Manganese-enhanced MRI (MEMRI)

An alternative imaging method is MEMRI, a contrast-based tech-

nique in which manganese ions enter excitable cells and accumulate

in active areas of the brain. MEMRI can be used to enhance mea-

surement of neural activation following gut hormone administration

(38). Kuo et al. (39) used MEMRI in mice fed ad libitum to track gut-

peptide central nervous system interactions and found enhanced

signal intensity in the ARC, paraventricular (PVN), ventromedial

(VMH) and periventricular nuclei of the hypothalamus following

ghrelin intraperitoneal infusions. Significant signal differences were

also found in the periventricular and fourth ventricle after PYY3–36

administration in fasted mice versus fasted vehicle-treated mice. The

signal changes in the ARC, induced by the hormone administration,

preceded the effects of ghrelin and PYY on food intake, providing

support for mediation by the hypothalamic ⁄ homeostatic pathway.

Using similar techniques, Chaudhri et al. (40) examined changes

in hypothalamic signalling following intraperitoneal administration

of the anorexigenic hormones GLP-1 and oxyntomodulin (OXM). In

fasted mice, injections of 900 nmol ⁄ kg of GLP-1 led to a decrease in

the PVN and an increase in the VMH signal compared to saline-trea-

ted fasted and ad libitum fed controls. After 900 and 5400 nmol ⁄ kg

OXM injections, there was decreased hypothalamic activity in the

ARC, PVN and supraoptic nuclei in fasted mice compared to fasted

saline treated controls. Cellular toxicity currently precludes the use

of MEMRI in humans. However, future animal studies using this

technique promise to help further elucidate the neural mechanisms

underlying the effects of gut hormones on appetite.

Human studies

In addition to the innovative animal studies described above, there

are also a number of human studies combining neuroimaging

methods with experimental manipulations of hormone levels via

feeding or direct hormone infusions. These are described in more

detail below and are summarised in Table 2.

PET

A post-hoc analysis of a cross-sectional PET study was performed

assessing brain activation with postprandial GLP-1 levels. Forty-

two lean adult males and females were given continuous oral

administration of a liquid formula meal until satiated as deter-

mined by visual analogue scale ratings. The meal was delivered via

peristaltic pump for over 25 min, following a 36-h fast (41). Brain

activation was measured before and after the meal. Correlational

analyses revealed associations between postprandial GLP-1 levels

and increases in activation in the dorsolateral PFC (dlPFC) and

hypothalamus. The dlPFC is involved in controlling inappropriate

behavioural responses (42) and has been associated with both

food reward and satiety (41, 43, 44), making it unclear whether

activation in this area reflects motivation to eat or inhibition of

intake. An impairment in dlPFC’s response to food stimuli may be

associated with the blunted postprandial rise in GLP-1 seen in

obese vs. lean individuals (45, 46). Examination of areas of

co-activation may shed further light on the role of the dlPFC in

eating behaviour (47).

fMRI

Imaging studies investigating neuronal responses to oral glucose

administration in humans have provided data on the relationship

between plasma glucose and insulin and appetite regulation. Mat-

suda et al. (48) administered a 75 g oral glucose load to ten obese

versus ten lean male and female adults after a 12-h fast. Oral glu-

cose ingestion started 10 min after subjects were placed in the

scanner. Following ingestion, lean participants showed deactivation

in the lower posterior quadrant of the hypothalamus including the

VMH, and obese participants showed a slower and smaller response.

In the upper anterior hypothalamic region including the PVN, there

was a slight deactivation and a relative delay in hypothalamic inhi-

bition in obese versus lean participants. The decrease (4–8%) in

BOLD signal in the lower posterior hypothalamus started 4 min

after ingestion and lasted approximately 10 min in all subjects, pro-

viding information about the lag time of homeostatic neural

responses. There was a positive correlation between the time to

reach the maximum response in the lower posterior hypothalamus

and upper anterior hypothalamus and fasting glucose and insulin

concentrations in both obese and lean subjects. The findings of

Matsuda et al. (48) suggest that delayed activation of satiety cen-

ters (e.g. VMH) following glucose consumption may contribute to

excessive intake in obese individuals.

In a similar fMRI study by Liu et al. (49), 21 healthy adults were

given a 75 g oral glucose load after a 12-h fast. A reduction in

hypothalamic activity (up to 4%) was observed initially at 1–2 min

and then again at 7–12 min following ingestion. Smeets et al. (50)

recently extended these findings by varying the glucose load and

adding a control water condition to rule out the possibility that

hypothalamic signal decreases independently over time. In this

study of 15 lean healthy males, 25 g or 75 g of glucose was

administered in 300 ml of orange-flavoured water, and the hypo-

thalamic signal (mostly in the upper anterior hypothalamus) was

shown to be significantly lower (1–2.5%) than in the water condi-

tion (300 ml)) for up to 30 min post-ingestion. This decrease was

significantly greater for the 75 g than the 25 g glucose load, sup-

porting a dose–response pattern. By contrast to the findings of
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Table 2. Summary of Animal and Human Neuroimaging Studies of Appetite-Related Peptides.

Study [similar

studies]

Peptides

(effect on

food intake) Method Protocol Key findings

Animal studies

Thanos et al.

(34)

Leptin (fl) lPET PET activation in 20 obese Zucker

fa ⁄ fa and 20 lean rats at

baseline and after 5 days of

bacon feeding (5 g ⁄ daily) in

both ad libitum and food

restricted rats

fl Hippocampal and › medial thalamic activity to bacon

scent in obese versus lean rats. › in right insular ⁄
parietal cortex, and medial olfactory bulb in ad libitum

fed rats and fl in restricted rats following bacon feeding

(5 g ⁄ daily)

Chen et al.

(37)

NPY (›)

5-HT (fl)

fMRI Hypothalamic responses following

glucose in 24 lean rats

(365 � 76.5 g) and 24

overweight rats (714 � 83.5 g)

and water in six lean and six

overweight rats

fl hypothalamic activation after glucose load in all rats.

BOLD signal delayed following glucose in overweight

versus lean rats. M in hypothalamic activity after water

control. fl 5-HT levels in overweight versus lean rats

Kuo et al.

(39)

Ghrelin (›) MEMRI Hypothalamic responses following

i.p. ghrelin administration in

male (C57BL ⁄ 6) mice

› in the ARC, VMH, PVN and Pe and M in fourth

ventricle, anterior and posterior pituitary activation after

0.06 nmol ⁄ g and 0.3 nmol ⁄ g ghrelin injections in

ad libitum fed mice versus vehicle-treated controls

Kuo et al.

(39)

PYY3-36 (fl) MEMRI Hypothalamic responses following

i.p. PYY3–36 in male (C57BL ⁄ 6)

mice

fl in the Pe and › in the fourth ventricle, and M in VMH,

PVN, anterior or posterior pituitary activation after

0.025 nmol ⁄ g PYY3–36 in fasted mice versus vehicle-

treated controls

Chaudhri et al.

(40)

[Parkinson

et al. (130)]

GLP-1 (fl) MEMRI Hypothalamic responses following

i.p. GLP-1 administration in male

(C57BL ⁄ 6) mice

› in the VMH, fl in the PVN and M in ARC and SON

activation after 900 nmol ⁄ kg GLP-1 versus saline in

fasted and ad libitum fed control mice

Chaudhri et al.

(40)

[Parkinson et al.

(130)]

OXM (fl) MEMRI Hypothalamic responses following

i.p. OXM administration in male

(C57BL ⁄ 6) mice

fl in the ARC, PVN, SON after 5400 nmol ⁄ kg OXM in

fasted mice versus fasted controls. M in ARC activation

after OXM injection versus saline-treated ad libitum fed

controls.› in VMH activity after 5400 nmol ⁄ kg in fasted

mice versus ad libitum fed and fasted controls

Human Studies

Pannacciulli

et al. (41)

GLP-1 (fl) PET GLP-1 levels and brain activity in

22 male and 20 female Ss (BMI

31 � 9) post 25 min liquid

formula meal

Postprandial › in plasma GLP-1 correlated with › in the

left dorsolateral prefrontal cortex and hypothalamus

Matsuda et al.

(48)

[Liu et al. (49),

Smeets et al.

(50)]

Insulin (fl) fMRI Hypothalamic activity after oral

(75 g) glucose load in ten obese

versus lean male and female Ss

› in delayed and attenuated inhibitory responses in obese

versus lean group in PVN and VMH. Correlation with

inhibitory responses and fasting insulin and glucose in

the obese and lean groups

Batterham et al.

(51)

PYY (fl) fMRI Brain activation, subjective

feelings, and hormone levels

during 100 min of continuous

PYY and saline infusion in eight

lean male Ss (BMI 21.7 � 0.7);

ad libitum intake 30 min post

scan

› in left orbitofrontal cortex, brainstem, parabrachial

nucleus, midbrain, VTA, insula, anterior cingulate cortex,

ventral striatum (globus pallidus and putamen), regions

in frontal, parietal, temporal and cerebellar cortex,

posterior hypothalamus, right substania nigra covaried

positively with plasma PYY

Malik et al.

(55)

Ghrelin (›) fMRI Brain activation to food and

nonfood cues following single-

blinded ghrelin infusions

(1 lg ⁄ kg) in 20 lean (BMI

22.3 � 0.7) male Ss

› in the bilateral amygdala, left orbitofrontal cortex, right

substantia nigra ⁄ VTA, left caudate, right hippocampus,

anterior insular cortex, and visual areas (including

pulvinar and fusiform gyrus) following ghrelin to food

versus non-food cues
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Matsuda et al. (48), there was no effect found in the lower hypo-

thalamus. It was postulated that the difference could be the result

of a decrease in activity within the lateral hypothalamic area in

which glucose sensitive neurones are activated by hypoglycaemia.

Other studies have combined direct hormone infusions with

fMRI. In a double-blind placebo-controlled crossover study by Batt-

erham et al. (51), eight lean healthy males were infused with physi-

ologically relevant doses of PYY3-36 to mimic the hormone profile

after satiation, whereas, on another day, they received saline infu-

sions designed to simulate the fasted state. All participants were

scanned throughout both infusions, and blood draws were taken

every 10 min throughout the 100-min procedure to measure hor-

mone levels, with visual analogue scale ratings made every minute

to assess subjective appetite. Thirty minutes following the scan,

participants consumed a mixed buffet meal and caloric intake was

measured. Correlational analyses revealed increased activation with

PYY3-36 infusion and corresponding decreases with saline infusion

in the left orbitofrontal cortex, parabrachial nucleus, ventral teg-

mental area, insula, anterior cingulate cortex, ventral striatum (glo-

bus pallidus, putamen), regions of the frontal, parietal, temporal

and cerebellar cortices and posterior hypothalamus (including

VMH), providing evidence for tight yoking between gut hormones

and brain activity. Furthermore, caloric intake in the buffet meal

was predicted by activation in the hypothalamus in the saline con-

dition, and by deactivation in higher-order reward areas (i.e. orbito-

frontal cortex) in the PYY condition. This was interpreted as

indicating a switch from homeostatic determination of feeding in

the fasted state to hedonic determination of feeding in the satiated

state (52).

An interesting distinction should be noted between the findings

of Matsuda et al. (48) and Batterham et al. (51). Although the

increase in hypothalamic signal with PYY3-36 (51) suggests that the

posterior hypothalamus is activated during satiation, the inhibition

of signal with glucose ingestion suggests the posterior hypothala-

mus is deactivated with feeding (48). This distinction could reflect

differences in mechanisms and brain areas involved in response to

glucose compared to PYY3-36. In addition, the hypothalamus is

surrounded by a vascular network and in close proximity to a sinus

cavity, potentially limiting spatial resolution in imaging studies (53).

Furthermore, although there are more established atlases and

parcellation protocols (e.g. Talairach space) for human compared to

animal brains, there is still no widely accepted standard. Imprecise

labelling can be a limitation when imaging micro-anatomical struc-

tures, such as the hypothalamus and brainstem (54). The difference

between the findings of Matsuda et al. (48) and Batterham et al.

(51) could therefore also be a result of activation of different ana-

tomical areas within the posterior hypothalamus (e.g. ARC or VMH)

and ⁄ or error attributable to differences in imaging techniques.

Neuroimaging methods have been used to examine brain activa-

tion in response to food stimuli following manipulation of appetite-

related hormones. For example, in a study combining i.v. infusions

of ghrelin with fMRI, Malik et al. (55) measured brain activation in

response to pictures of highly palatable foods (e.g. pizza, hamburg-

ers) versus nonfood stimuli (e.g. scenery pictures) following a 3-h

fast in lean healthy males (n = 12) before and after a 20-min ghre-

lin infusion. They compared the results with those from similarly

timed scans conducted in a control group (n = 8) receiving no

ghrelin. Post-infusion increases in response to the food (versus

non-food) pictures were observed in the amygdala, orbitofrontal

cortex, insula and striatum, comprising areas that are associated

with encoding the reward value of stimuli (56) and have shown

activation to appetising food images (57, 58). These findings are

consistent with other studies showing that ghrelin activates dopa-

mine neurones in the VTA and increases dopamine turnover in the

nucleus accumbens of the ventral striatum (59, 60). They suggest

that the orexigenic effect of ghrelin is associated with an up-regu-

lation of mesolimbic dopaminergic activity accompanied by an

increase in motivational salience of high-energy foods (4, 55).

Two studies have also combined hormones with neuroimaging of

responses to food stimuli to examine the effect of long-term or

Table 2. (Continued)

Study [similar

studies]

Peptides

(effect on

food intake) Method Protocol Key findings

Rosenbaum

et al. (61) [Baicy

et al. (36),

Farooqi et al.

(35)]

Leptin (fl) fMRI Brain activation to visual food

cues in two male, four female

inpatient obese (BMI

> 30 kg ⁄ m2) Ss at their usual

weight and 10% reduced body

weight, when receiving either

twice daily s.c. injections of

leptin or placebo

After weight loss, leptin-reversible ›s were found in the

brainstem, culmen, parahippocampal gyrus, inferior and

middle frontal gyri, mid temporal gyrus, and lingual gyrus

to visual food cues. There were also leptin-reversible fls

elicited by food-related cues in the hypothalamus

cingulate gyrus, and middle frontal gyrus

›, increase; fl, decrease; M, no significant difference; ARC, arcuate nucleus; BMI, body mass index (kg ⁄ m2); BOLD, blood oxygen level-dependent; fa ⁄ fa, gene-

type encoding obese Zucker leptin receptor deficient; GLP-1, glucagon-like peptide 1; 5-HT, serotonin; fMRI, functional magnetic resonance imaging; MEMRI,

manganese-enhanced magnetic resonance imaging; NPY, neuropeptide Y; OXM, oxyntomodulin; Pe, periventricular hypothalamic nucleus; lPET, micro positron

emission tomography; PET, positron emission tomography; PVN, paraventricular nucleus; PYY3-36, peptide YY3-36; SON, supraoptic nucleus; Ss, subjects; VMH,

ventromedial hypothalamus; VTA, ventral tegmental area.
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genetic alterations of signalling on appetite and body weight in

humans. In a study of leptin replacement in genetically leptin-defi-

cient adults, Baicy et al. (36) reported reduced fMRI activation in

the leptin supplemented group in areas involved with hunger

(insula, parietal and temporal cortex) and greater activation in

regions linked to inhibition and satiety (PFC) in response to visual

pictures of food (e.g. fried chicken, cheeseburgers) compared to

neutral stimuli (e.g. brick walls). Another group extended this to

leptin-deficient adolescents, demonstrating marked fMRI activation

in the ventral striatum in response to food images presented in

both the fed and fasted states, which was markedly reduced

following 1 week of leptin administration (35). Rosenbaum et al.

(61) have applied this methodology to individuals with common

polygenic obesity. In their study, six obese inpatients that had lost

10% of their initial weight on a liquid diet were given twice-daily

s.c. injections of leptin or saline for 5 weeks (Table 2). Responses to

visual presentation of actual foods were assessed at baseline, after

weight loss, and after leptin and saline administration. Post-admin-

istration, the saline group showed significantly greater activation to

food cues compared to the leptin group in areas including the

insula, parahippocampal gyrus, and middle and superior frontal gyri,

consistent with a relatively greater appetitive responsivity and drive

to eat (61). Taken together, these studies are consistent with a

model in which leptin down-regulates ‘hedonic’ activation in reward

areas in response to food stimulation, and simultaneously up-regu-

lates homeostatic control by enhancing the central response to

peripheral satiety signals (35, 62).

Neurohormonal treatments for obesity

Neuroimaging studies of gut–brain interactions offer new avenues

for developing more efficacious pharmacological agents for weight

control. Such treatments may become essential given the growing

rates of severe obesity and the limited success of behavioural

weight loss interventions (63). However, to date, orlistat (lipase

inhibitor), sibutramine and phentermine-like sympathomimetics are

the only approved anti-obesity agents available worldwide, whereas

exenatide (GLP-1 analogue) and sitagliptin (DPP-IV inhibitor) are

licensed adjuncts to current diabetes treatments (52). Leptin is a

potential therapeutic agent; however, its administration in obese

humans has not been nearly as efficacious in reducing food intake

and body weight as in animals, probably because of the greater

development of leptin resistance in humans (62, 64). Pharmaceuti-

cal companies are testing ghrelin antagonist drugs (NOX-B11), syn-

thetic forms of amylin (pramlintide, davalinitide), PP (TM-30339),

leptin (metreleptin) and oxyntomodulin (TKS1225) in clinical trials,

although none of these are yet approved for weight loss.

Existing neuroimaging and gut hormone studies already give

clues to mechanisms for current and future gut hormone-like

drugs. For example, PYY3-36 and GLP-1 have been shown to induce

concomitant changes in the orbitofrontal cortex and PFC, respec-

tively (41, 51), suggesting that drug analogues that promote the

anorexigenic properties of PYY3-36 (obinepitide, s.c.) and GLP-1 (exe-

natide, liraglutide) may be altering the perceived reward value of

certain foods and responsivity to food cues, via activation of appe-

titive neural networks (52). Neuroimaging studies of the mecha-

nisms of Roux-en-Y gastric bypass, which produces dramatic

therapeutic changes in gastrointestinal hormones (65, 66), could

also assist in the development of nonsurgical interventions to

mimic its effects (67). Animal studies have already demonstrated

hyperphagia and increased preferences for high-energy foods fol-

lowing pharmacological activation of hedonic brain networks (68,

69), suggesting that pharmacological agents with the opposite

effect may be plausible for inducing weight loss.

The disadvantage of using gut hormones as therapeutic agents

include the need for peptides to be injected to avoid being digested

following oral administration by gut enzymes. Furthermore, efficacy

may be short-lived, requiring repeated injections to maintain weight

control. A number of adverse psychiatric and physiological side

effects have also been associated with the use of neuromodulatory

agents, which led to the removal from the market of drugs such as

rimonabant, a cannabinoid receptor antagonist (52).

Discussion

Feeding behaviour and body weight regulation are largely under the

control of hunger and satiety signals resulting from gut–brain

interactions, triggered in response to appetitive stimuli and ingested

nutrients (70). Lesion studies, genetic knockouts and single cell

recording in animals have improved our knowledge of the underly-

ing neuroendocrine pathways, and new studies using PET and fMRI

are now providing insights into in vivo functioning of gut–brain

pathways in humans. For example, neuroimaging studies have

shown that exposure to appetising food cues results in preferential

activation of hedonic regions of the human brain, and that obese

individuals show greater activation in these areas (30, 71, 72). It is

also known that obese and lean animals and humans differ in basal

and meal-stimulated levels of appetite-related hormones (Table 1).

Currently, studies combining neuroimaging with hormone manipu-

lations are revealing that hedonic brain activation may be accentu-

ated through the actions of gut peptides (51, 55) and also by a

deficiency of regulatory hormones, such as leptin (35, 36, 61).

These findings are consistent with a model in which hormones

released by the gut and adipose tissue modulate perceived food

reward. Abnormalities in hormonal signalling may sometimes pre-

cede abnormalities in brain responses in regions involved with food

reward, emotion, satiation and inhibitory control. Gut peptides may

influence brain activation by mediating a switch from need-based

when hungry to reward-based regulation of intake when sated

(41, 51). The ease with which gastrointestinal satiety signals are

over-ridden by changes in neural influences on perceived reward

value of food may be related to genetically-influenced differences

in responsivity to food cues (73–75) in the environment (76).

There are a number of promising avenues to take this research

forward. Functional connectivity studies examining differences in

dynamic neural pathways between homeostatic and hedonic brain

structures may help to elucidate mechanisms underlying weight

gain in obese individuals. Meanwhile, the identification of the

peripheral signals that interact with these brain pathways will be

key for future development of gut–hormone-derived therapies and
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brain-imaging biomarkers (77). Studies of bariatric surgery will pro-

vide an opportunity to explore potential neurohormonal targets,

aiming to achieve less invasive nonsurgical appetite reductions (78,

79). There is little doubt that relationships exist between the obeso-

genic food environment, neural activity and appetite-related peptide

hormone levels. Studies combining neuroimaging and hormone

methodologies may help to elucidate causal models describing the

interaction between these major influences on appetite regulation

and obesity.
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